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Abstract-The equations of equilibrium for inextensible large three-dimensional defonnations of
rods are solved using an iterative shooting technique which essentially converts the original boundary
value problem to a sequence of initial value problems that converge to the desired solution. This
approach is combined with a method for considering the rod using a number of segments. The use
of segments in this fashion is found to be useful for modelling complex rod structures, as well as
having practical numerical advantages. The technique is applied to a variety of example problems.
Where previous analytical or numerical results are available, the present approach is shown to
compare favourably. The shooting technique employed is also found to be well suited to finding
multiple equilibrium solutiolls. This method can be used efficientl)' and accurately on a personal
computer, mainly due to the fact that the load can be applied in its entirety so that load increments
are not required. In addition, there is no need for large computer memory to store the detailed
infonnation for all the segments simultaneously, as the solution of one segment is simply used as
the input to the next.

I. INTRODUCTION

While the equations governing the classical Kirchhoff-Clebsch theory for deformations of
inextensible elastic rods have been available for some time (Love, 1944), these equations
continue to be investigated for several reasons. One of the major reasons for studying
solutions is that they have numerous practical applications in problems as diverse as the
laying of offshore pipelines (Faulkner and Stredulinsky, 1976-77) and the development of
orthodontic retraction systems (Lipsett et al., 1990). A second, very different reason is that
the formulation of rod problems is an example of a one~dimensional continuum theory
which can be used to investigate nonlinear phenomena including questions of stability
(Steigmann and Faulkner, 1993) and multiplicity of solutions (Navaee and Elling, 1992).

When the discussion is limited to planar problems, several analytical results are avail
able for uniform cross-sectional rods subjected to particular loading conditions (Mitchell,
1959; Frisch-Fay, 1962; Antman, 1968-{)9). For more general loading, especially for the
so-called heavy elastica (gravity loading), which require numerical techniques, there is an
extensive literature [see the review by Wang (1986)]. The major difficulty in most numerical
schemes for large deflection rod problems is the large rotations which can occur between
the unloaded and loaded configurations. This can lead to regions where the curvatures
become large and, in the case of the finite element and finite difference approaches, require
a large number of loading increments, resulting in greatly increased computational effort.
Also, in situations for which multiple solutions occur, the usual finite element formulation
is not well suited as the loading path must be modified as done by Fried (1981). More
recently, Navaee and Elling (1991, 1992) have employed two different approaches to study
multiple solutions of cantilever beams. One approach utilizes elliptic integrals and uses a
procedure similar to the one developed by Frisch~Fay (1962). The other approach employs
a predictor--corrector scheme with an initial value formulation. An alternative approach to
either finite element or finite difference formulations, dubbed the segmental technique, was
developed for applications including the deployment of offshore pipelines (Faulkner and
Stredulinsky, 1976-77) and the prediction offorces and moments produced by specialized
orthodontic spring designs (Lipsett et al., 1990; Faulkner et al., 1991). This technique
avoids the direct solution of the nonlinear boundary value problem by considering a
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sequence of initial value problems similar to that suggested by Keller (1968). With the use
of an initial value formulation, the development of multiple solutions can be studied in a
systematic manner (Lipsett et al., 1993).

When the truly three-dimensional case is considered, the number of analytical or
numerical solutions is more limited. The only tractable analytical solution known to the
authors is that of an initially straight circular rod bent and twisted into a helix, which has
been considered by Love (1944) for the inextehsibk: case while Whitman and DeSilva (1974)
considered the extensible situtation. Numerical solutions for other specific deformations
have been given by Frisch-Fay (1962) and more recently by other investigators like Surana
and Sorem (1989) using a geometrically nonlinear finite element formulation. With appli
cations for orthodontic springs in mind, Defranco et ai. (1976) formulated the complete
three-dimensional equations; however, they considered only planar examples using a finite
difference approach.

A solution procedure utilizing an initial value formulation for fully three-dimensional
rod problems is presented in this work. The following section discusses the kinematics,
equilibrium equations and constitutive assumptions describing the general behaviour of the
rods to be considered. This includes general rewJts.which can be used to check the numerical
procedure developed later. In Section 3 the nfi>nlinear equations are applied to a segment
of the rod and direct numerical integration is used to obtain a solution from the initial
values. A method for assembling the various segments together is presented, as well as a
shooting technique to ensure boun<iaty conditions are satisfied. Section 4 presents some
numerical results for a variety ofproblems which are compared with previous analytical
and numerical results, when available, to assess the effectiveness of the present technique.
The first problem considered is an initially straight circular rod bent and twisted into a
helix by the action offorces and moments along the initial axis of the rod only. The second
problem is an initially straight rod with a rectangular cross-section deformed into a Mobius
strip. The third problem considered is an initially curved cantilever beam under the action
of dead tip and uniform distributed loads. A final example considers an orthodontic spring
which involves an irregular initial configuration.

2. KINEMATICS. CONSTITUTIVE ASSUMPTIONS AND EQUILIBRIUM

For the purpose of this work, a rod is defined to be a one-dimensional continuum
which deforms only through hencung and twisting, as it is assumed to be inextensible. A
reformulation of the theory for such rods in a variational setting has recently been presented
in detail by Steigmann and Faulkner (1993). After a brief description of the kinematical
basis used, their Ilesults will be referred to as required.

A configuration of the rod is characterized by a set of position functions and an
orthonormal basis {r(5), ej(s)} which define the location and orientation of any point on
the rod in terms of the arclength parameter s:se(O, L). The vector ej(s) is a unit vector
which is everywhere in the tang~nt direc~nof increasing arc length. The unit vectors eis)
and e3(s) are embedded in the material, which defines the orientation of the cross-section.
For the case of orthotropic rods, e2(s) and e3(s) are in the principal directions of the cross
section, while for rods which are transversely isotropic any e2(s) and e3(s) which span the
cross-section are principal directions. This orthonormal basis {ei(s)} will be referred to as
the material basis. In the initially undeformed state {r(s), e,(s)} take on the values {x(s),
Ej(s)}, which serves as a reference oonfiauration. The material basis {e i } differs from the
Frenet basis in that the latter depends only on the shape of the centreline of the rod and
does not take the orientation of the cross-sections into account. The material basis has the
advantage of being uniquely determined even in the case where the rod remains straight.

The rate of change of the material basis {e;} with respect to arc length is determined
by the vector Ie (I( = Kjej ), i.e.

(1)

where the prime notation indicates differentiation with respect to arc length. The K) com
ponent is the twist per unit length along the rod, while K2 and K3 are the components of



Three-dimensional rod deformations 1139

curvature. In the rod's undeformed configuration, which may be initially curved and twisted,
K;(S) take on the values K?(S).

The equations of equilibrium can be derived from variational principles (Steigmann
and Faulkner, 1993) or from more elementary considerations (Love, 1944; Landau and
Lifshitz, 1986) and are

F'+b = 0

M' = Fxe" (2a,b)

where F, M and b are the normal force resultant, moment resultant and body force per unit
length, respectively.

It has been shown (Steigmann and Faulkner, 1993) that for rods which are uniformly
curved and twisted in the reference configuration, the classical energy integral (Love, 1944)
can be generalized to give

(3)

where U is the strain energy per unit length and b is a constant body force. This result can
serve as an accuracy check, which must be approximately satisfied by any numerical
technique.

The rods being considered are assumed to have a quadratic strain energy function U.
As is the usual case (Love, 1944), it is further assumed that Udepends only on the difference
between the initial and final components of curvature, according to

(4)

where GJ is the torsional rigidity and El2 and El3 are the flexural rigidities about the princi
pal e2 and e3 axes, respectively. This in turn implies that the moment can be expressed as

(5)

When the rod being considered is initially straight and transversely isotropic, there is the
special result that

K I = constant (6)

(Landau and Lifshitz, 1986), which must be satisfied. This can also serve as an accuracy
check on the results delivered by any numerical technique for problems in this class.

3. NUMERICAL PROCEDURE

Consider a segment of the rod as shown in Fig. 1. As will be discussed later, a number
of these segments will be joined together to form the complete rod. Here, {E;} is a fixed

r(s)

Fig. 1. Arbitrary rod segment.
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global orthonormal basis in which the particular rod problem is formulated. For example,
if gravity loading is included it may act in the negative, E2 direction. {e;} is the embedded
material basis which changes orientation along the length of the rod segment. At the start
of the segment (s = 0) the values of {e;} are {en, which will serve as a fixed (independent
of arclength) basis in a particular segment of the rod. The basis {en will be referred to as
the local basis.

The orientation of the material basis in terms of the local basis is most conveniently
expressed using Euler angles. Love (1944) used a set of Euler angles which suffer from the
fact that a singularity occurs for a null rotation. For convenience, the set of Euler angles
commonly referred to as the yaw (eP), pitch «(}) and roll (l/J) angles [see Goldstein (1980)]
are chosen which move the singularity away from the null rotation. In terms of these angles
the components of the material basis {e;} are

(7)

(8)

where c and s represent cosine and sine, respectively. Therefore, the Euler angles at the
start of the segment are {O, 0, O} (i.e. a null rotation).

The components of curvature and twist along the segment, which are shown (Steig
mann and Faulkner, 1993) to be

(9)

where eijk is the permutation symbol, can then be expressed in terms of the Euler angles as

K 1 = t/J' -seeP',

K2 = ces",eP' +c",(}',

K) = coc",eP' -s",O'. (10)

In terms of the local basis, the rod segment starts at the local coordinates (x, y, z) = (0,
0,0). Since e t = r'(s) is the unit tangent vector, the coordinates of the centreline of the rod
in the local basis satisfy the differential equations

(11)

The force vector F at the start of the segment can be expressed as

(12)

where the F? are the initial tension and shear components. For the purpose of illustration,
consider that a dead uniform distributed load b acts on the segment. b can be expressed in
terms of {e?}, since this is a valid orthonormal basis, as

(13)

where the bi are constants. The equilibrium equation (2a) can then be integrated to give
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F(s) = F(O)- J: bds,

which for the special case of uniform loading becomes

F(s) = (F? - b;s)e?

1141

(14)

(15)

However, to obtain the true tension and shear components along the segment, F needs to
be expressed in terms of the material basis so that

(16)

where

(17)

Combining the constitutive relationship (5) with the equilibrium equation (2b) gives

F x e, = GJ(K, -Kne\ +EI2(K2 -Kne/2 +EI3(K3-Kne3

+GJK') e) +EI2K;e2 +EI3K3e3, (18)

which can be written as three component equations:

GJK') = (EI2-EI3)K2K3+EI3K2Kg-EI2K3K~,

EI2K; = (E13-GJ)K]K3 +GJK3K? -EI3K]Kg +F3,

EI3K3 = (GJ-EI2)KIK2 +EI2K) K~ -GJK2K? -F2. (19)

Note that the tension F) is not involved directly since the rod is assumed to be inextensible.
By introducing the dimensionless parameters

_ FiL
2

Ki = KiL, Vi = EI '

(20)

where EI (no subscript) is taken to be the larger of EI2 and E13, eqns (19) become a
dimensionless system of three second order differential equations for the three Euler angles:

where

¢' = C1fJC", +C2 ys",
fJyce '

1/= C2 yc",-C)fJSI/I
fJy ,

,. C3 + (}se¢'
t/I= (} , (21)
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A 0 0 • • • • • •
C j = (D.-P)KIK2+/3K2K) -D.K)K2+Y(SoC",</>(}+Cos",</>l/J+c",Ol/J)-V2'

A 0 0 • • • • • •
C2 = (y-D.)K)K3+D.KIK3-yK3K) +P(SOS",</>(}-COC",c/>l/J+S",Ol/J)+V3'

(;3 = (P-y)K2K3+yK~K2-PKgK3+D.CO~(j, (22)

and where the superposed dot indicates differentiation with respect to p. Similarly, using
eqn (20), eqns (10) and (17) become

and

while eqn (11) becomes simply

KI = t/i-so~,

K2 = cos",~+c",(j,

K3 = coc",~-s",(j, (23)

(24)

(25)

Equations (20)-(25) completely describe the deformation of the rod segment in terms
of the conditions at the beginning of that segment. The forces, moments and geometry at
the end of the segment can therefore be determined by the forces, moments and geometry
at the start of the segment by direct numerical integration. The geometry obtained along
the rod is then related back to the global basis {E;} to allow the specific position of the rod
to be determined. The Bulirsch-Stoer method is used, rather than the more common Runge
Kutta methods, to perform the integration because it is significantly more computationally
efficient when high precision is required [see Press et al. (1992) for a description of the
method].

In the previous discussion a method of solution for an individual segment of the rod
was presented. To solve the entire rod, which can be composed of a number of segments,
the individual segments are assembled in such a way that force and geometric compatibility
are maintained. This is accomplished by using the values for the forces and geometry
obtained at the end of one segment as the starting values to the next. For example, the
orientation of the material basis {e;} at the end of the kth segment becomes the local basis
{en for the k+ lth segment. This procedure is continued from segment to segment until a
solution is obtained for the entir.e rod. In this way, the forces, moments and geometry at
the end of the rod are completely determined by the forces, moments and geometry at the
start of the rod.

One of the main reasons for solving the rod in segments in this manner is that many
rods of interest have complicated geometries in their undeformed configuration. These rods
can be modelled as a series of segments of simple geometric types. Since each individual
segment has a simple geometry it can be considered much more readily. Complex loading
conditions or varying material properties can be similarly handled in a straightforward
manner. A further advantage to using segments is that for many problems large rotations
occur and the Euler angles used can pass through a singular point (0 = nl2 for the Euler
angles used here). By introducing new segments along the rod, the Euler angles can all be
reset to zero, thus avoiding the singularity and the resulting numerical difficulties.

The solution as presented is an initial value approach in that the conditions must be
completely specified at one end of the rod in order to obtain a solution. Most rod problems
are actually two-point boundary value problems where some of the boundary conditions
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are known at each end of the rod. To solve such a problem an iterative shooting procedure,
similar to that described in detail for planar problems (Lipsett et al. 1990), is employed.
This procedure requires that 12 initial conditions (force and moment components, position
coordinates and Euler angles to specify the orientation) be specified at the start of the rod.
In general, not all of these will be known a priori. Some of these values will be unknown,
but a corresponding number of conditions will be known at the other end of the rod. The
unknowns must be initially estimated to start the numerical procedure. From these initial
conditions the solution throughout the rod is obtained using the method described.
However, as the computed conditions at the end of the rod will not in general agree with
the known conditions at that end, a Newton-Raphson false position method is then used to
iteratively improve the estimates of the unknown initial values until the required boundary
conditions at the end of the rod are satisfied to within some specified tolerance.

4. RESULTS AND APPLICATIONS

To illustrate the numerical technique described in the previous section, four problems
are presented. The first problem which will be considered is that of an initially straight
circular rod deformed into a helix with radius R and pitch angle IX by the application of
moments and forces along the initial axis of the rod only (Fig. 2). The analytical solution,
which has been presented by Love (1944) and Landau and Lifshitz (1986), requires a
moment of

(26)

where

(27a-e)

a) Initially Straight Rod

where M z is the component of the moment along the initial axis of the rod, M, is the
component tangential to the cylinder on which the helix is traced, , is the angle of rotation
about the E3 axis and EIz = E/3 = EI. In addition, the force required is

-------------------...
~

b) Deformed Helix

Fig. 2. Straight rod deformed into a helix.



1144

so that
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F = FE 3 ,

GJK) EI .
F= -R - -COS

2
IXSInIX,

R2
(28)

(29)

If the problem is posed with M" F and a. specified, the radius R and the twist per unit length
K) are determined using eqns (27a, b) and (29) to yield

cos IX J 2 .
R = 2F' [Mz ± M z -4EIFsInIX],

SIn a.
(30)

with the corresponding value for K 1determined from either ofeqns (27a, b). This means that
there may be either no solution or two solutions for the radius (each with a corresponding K])
provided F =I- O.

To begin the solution procedure the coordinates of the start of the rod in the global
basis are assumed to be

x = R, Y = 0, Z = 0,

while the initial material basis is given by

(31)

(32)

for a helix with pitch angle IX. This allows the force and moment components relative to the
material basis to be calculated at the start of the rod.

To compare the numerical and analytical solutions, an initially straight steel rod
(E = 207 GPa, G = 70 GPa) of length I m and with a cross-sectional diameter of 6 mm is
subjected to axial forces and moments of 100 Nand 200 Nm respectively, with the pitch
angle a. selected to be 45°. This particular choice of forces allows two analytical solutions
from eqn (30) as

(R)] = 0.04769610m (KI)] = 16.25726757m- ' ,

(Rh = 1.95230390m (Kd2 = 31.37851470m- ' . (33a,b)

Figure 3 is a plot of the deformed geometry in the ZYand ZXplanes for both the analytical
solutions and the numerical results. (Note: the XY plane geometry is a circular arc.) The
numerical solutions can be seen to be indistinguishable from the analytical solutions. While
the first solution (33a) indicates a helix with more than two complete turns, the second is
only a small fraction of one turn. Since the initial conditions are completely specified, no
shooting is required to solve this problem. Note that despite the simple initial geometry,
five segments were required to generate the numerical solution. This was in order to avoid
the singularity in the Euler angles which would occur at an arclength of approximately
0.211 m and cause numerical difficulties.

As well as comparing the deformed shapes as above, two further checks on the accuracy
of the numerical solution were done. As this is a circular rod the twist per unit length KI

should remain a constant. In addition, the first integral [eqn (3)] should also be a constant.
There was no variation in either of these quantities to seven significant digits for the two
numerical solutions shown in Fig. 3.
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Fig. 3. Geometry ofdeformed rod, M, = 200 Nm, F, = 100 N. ex = 45'. (a) ZYplane; (b) ZXplane.

As a further test of the robustness of the numerical solution, the pitch angle of the
resulting helix was changed from 45° to first 5° and then 85°, while the values for the axial
force and moment were held fixed. This has the effect of changing the relative amounts of
bending and twisting in the deformation. When IX approaches zero there is almost pure
bending with little twist, while a value of IX near 90° indicates considerable twist with little
bending as the rod remains almost straight. For both these extreme cases considered, eqn
(30) still indicates that multiple solutions exist. In all the cases considered, there was again
excellent agreement between the analytical and numerical solutions. Also, the checks using
K( and the first integral [eqn (3)] were found to be similarly consistent to seven significant
digits.

To investigate rods with non-circular cross-sections, the second problem considered is
a thin rectangular rod deformed into a Mobius strip. To make such a strip, the ends of the
rod are jointed together after undergoing a one-half twist about the centreline. This is an
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example of a six-parameter shooting problem as there are six unknown quantities at the
start of the rod, specifically the components of the force and moment. The fact that the end
of the rod is connected to the start gives three of the six corresponding known values at the
end of the rod. The other three conditions arise from the fact that the cross-section at the
end of the rod is rotated 1800 about the centreline with respect to the orientation of the
initial cross-section. The Euler angles needed to specify this orientation supply the remaining
known conditions.

Mahadevan and Keller (1993) have recently investigated this problem and presented
numerical results for various aspect ratios of the cross-section. An analytical solution
available for rods with square cross-sections (aspect ratio = 1) was used as the starting
point for a continuation scheme to obtain the results for higher aspect ratios.

Figure 4(a-e) shows the results obtained in the current investigation for a rod (Pois
son's ratio = 0) of constant thickness, length of 21t m and which has its width varied to

(a)
2.5 .,.....--------------------,

2.0

G6Ele€l Aspect ratio = 1
Gi3aetJ Aspect ratio =2
~ Aspect ratio =5
...... Aspect ratio =10

!
I.S

g..
= 1.0:a...
0
0

'">- 0.5

0

-0.5
-1.5 -1.0 -0.5 0 0.5 1.0 1.5

X coordinate (m)
(b)

I.S
GElee€> Aspect ratio 1
~ Aspect ratio 2
~ Aspect ratio 5
..... Aspect ratio 10

1.0

!
0.5

g..
= 0
~
0
0

'"N
-0.5

-1.0

-1.S
-1.5 -1.0 -0.5 0 0.5 1.0 1.5

X coordinate (m)

Fig. 4. Geometry of Mobius strip for various aspect ratios. (a) XY plane; (b) XZ plane; (c) YZ plane.



Three-dimensional rod deformations 1147
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Fig. 4. (Continued).
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-0.5

produce aspect ratios in the range from 1 to 10. These results are in close agreement with
the graphical results presented by Mahadevan and Keller (1993). For an aspect ratio of I,
the deformed shape of the centreline is circular and remains planar. As the aspect ratio is
increased, the centreline deforms more and more out of the initial plane and loses its circular
shape [see Fig. 4(b, c)]. For very large aspect ratios, Mahadevan and Keller (1993) showed
that the centreline approached a limiting shape, which they found was nearly indis
tinguishable from the results for an aspect ratio of 10. As a result, higher aspect ratios were
not investigated here. For all the cases investigated, the first integral [eqn (3)] was found
to show no variation to seven significant digits.

When a square cross-section is used (aspect ratio = I), the rod is transversely isotropic
and, from eqn (6), KI should remain constant. At higher aspect ratios, however, the rod
becomes transversely orthotropic and KI need not remain constant. This behaviour is
evident in Fig. 5, which shows the variation in KI along the rod for various aspect ratios.

To investigate rods which have an initial curvature, the third problem considered is a
cantilever beam with a 45° bend acted upon by a dead tip load, as shown in Fig. 6. This is
a two-parameter shooting problem since only the M 1 and M 2 components of the moment
are unknown at the fixed end. At the free end all the moment components must vanish.

Table I shows the predicted coordinates of the cantilever tip for various dimensionless
loads k, where

PR2

k=
EI

(34)

and El2 = El3 = EI. These values are in excellent agreement with the results reported by
Surana and Sorem (1989), who used a nonlinear finite element procedure.

The tip load was then replaced with a dead distributed load to consider a more
complicated loading and demonstrate the suitability of the current method for handling
such loading conditions. Table 2 shows the results obtained for various kd values, where

(35)
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Fig. 5. Twist per unit length along Mobius strip.

z
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I I

DJu
Fixed End

x
R· 100"

y

Fig. 6. Initially curved cantilever beam bent out of the plane.

and w is the magnitude of the distributed load. For all of the loads considered, the first
integral [eqn (3)] was again found to be consistent to seven significant digits. We were
unable to find in the literature another solution which incorporates such a loading condition.
Presumably, this implies the difficulty other methods have in solving such problems.

As a final application of the present technique, an orthodontic appliance is considered.
Many of these appliances are irregularly formed rods which, when activated, provide a
system of foTtles and couples to reposition teeth within the dental arch. In order to provide
appropriate levels of force and moment, these appliances have complex initial geometries
and undergo large deflections. The analysis of these structures has been confined to planar
deformations (Lipsett et al., 1990); however, in many applications a complete three-dimen
sional discussion is necessary. An example of a retraction appliance is the T-spring shown
in Fig. 7. This spring was constructed of a titanium molybdenum alloy (TMA) wire with a
0.432 mm x 0.625 mm (0.017 in. x 0.025 in.) rectangular cross-section (E = 73.9 GPa,
G = 28.2 GPa). This appliance was analysed for planar deformations by Lipsett et
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Table I. Geometry at the end of a curved cantilever due to tip load

Current method Surana and Sorem (1989)

k X (in.) Y (in.) Z (in.) X (in.) Y (in.) Z(in.)

1.0 69.1362 71.6529 15.2722 69.1975 71.6195 15.0119
2.0 65.4006 73.8728 27.5836 65.5727 73.7796 27.2169
3.0 61.0592 76.4225 36.4615 61.3109 76.2900 36.1061
4.0 56.9396 78.8072 42.7314 57.2323 78.6598 42.4276
5.0 53.2915 80.8861 47.2451 53.6011 80.7386 46.9963
6.0 50.1288 82.6567 50.5950 50.4428 82.5185 50.3935
7.0 47.3945 84.1679 53.1595 47.7069 84.0353 52.9962
8.0 45.0206 85.4561 55.1786 45.3285 85.3319 55.0458
9.0 42.9451 86.5639 56.8080 43.2471 86.4472 56.6994

10.0 41.1167 87.5240 58.1511 41.4120 87.4136 58.0621
11.0 39.4935 88.3625 59.2787 39.7818 88.2572 59.2056
12.0 38.0422 89.1002 60.2404 38.3233 88.9990 60.1806
13.0 36.7359 89.7536 61.0719 37.0097 89.6557 61.0232
14.0 35.5530 90.3359 61.7994 35.8195 90.2407 61.7600
15.0 34.4758 90.8580 62.4427 34.7351 90.7649 62.4112

Table 2. Geometry at the end of a curved cantilever
due to distributed load

kd X (in.) Y(in.) Z (in.)

1.0 70.5656 70.7751 4.6391
2.0 70.1384 70.9649 9.1990
3.0 69.4515 71.2698 13.6082
4.0 68.5387 71.6746 17.8090
5.0 67.4398 72.1613 21.7603
6.0 66.1964 72.7111 25.4381
7.0 64.8482 73.3063 28.8330
8.0 63.4307 73.9303 31.9474
9.0 61.9738 74.5716 34.7920

10.0 60.5020 75.2177 37.3826
11.0 59.0343 75.8606 39.7381
12.0 57.5852 76.4940 41.8786
13.0 56.1654 77.1135 43.8238
14.0 54.7824 77.7156 45.5930
15.0 53.4411 78.2985 47.2038

Srnm'
Fig. 7. Initial geometry of orthodontic T-spring appliance.
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Table 3. Detailed .breakdown ofsegments used to modeLortho.
dont~ T-spring

Segment Length (mm) Angle (0) Radius (mm)

I 5.680
2 27.5 2.453
3 3.797
4 100.0 1.000
5 2.765
6 78.0 1.000
7 2.743
8 144.5 -1.000
9 7.725

10 142.0 -1.000
II 3.292
12 76.0 1.000
13 2.765
14 100.0 1.000
15 3.994
16 25.0 2.589
17 5.680

al. (1990). They used an iterative shooting technique in which the appliance was considered
to be composed of the 17 segments shown in Fig. 7. Table 3 shows a detailed breakdown
of the segments used to model the appliance. The lengths of the initially straight segments
are shown, as are the radii of curvature and arc angles for the initially curved ones. Note
that a positive radius is used to specify a counter-clockwise rotation and a negative radius
is used for a clockwise rotation.

Figure 8 illustrates the utilization of the T-spring in a plane. The unloaded shape is
first brought to the neutral position, essentially through the application of couples to its
two ends. The appliance is then further "activated" by pulling the ends apart a specified

Unloaded Shape

-------J
Neutral Position

5mm Activation

Fig. 8. Undeformed. neutral position and '5 mm activation shape for T-spring appliance.
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amount (up to 5 mm in this example). The fully activated spring is thenhe1d in this shape
by means of brackets which are mounted on the outer surfaces of the teeth. This appliance
provides a predictable force/~uplesystem to tho teeth on whkh itismounted. The T-spring
shown is often employed to close up spaces between the teeth (possibly after extraction of
a tooth between the two on which the ends are mounted).

While the above description coosidorcd only foree systems applied in the plane of the
appliance, it is often desirable to provide force syJtems to prevent or el1hanco out-of-plane
movements as well. For example, the application of the planar syssemof forces alone to
the exterior swfaces of the teetA may result in 1mwaatod I:otatioR .r the teeth about their
long axes. As a possible means of accompIiab.iqthiJ JNl, one ead. of the appliance could
then be bent up to 30° out oftile initial plane, which would now be a fwly three-dimensional
deformation. Figure 9(a) and (b) shows two views of the deformed appliance geometry at

(a)
20

IS

e 10

!
~osc: S:a..
0
0
u

>- 0

-s

-10
0 S

(b)
20

10 IS 20

X coordinate (mm)

2S 30

302S

IS

e 10

!
~

Sc:
~
0
0
u
N 0

-S

-10
0 10 IS 20

X coordinate (mm)

Fig. 9. Deformed geometry of orthodontic appliance; 5 mm activation, 30° out of plane. (a) XY
plane; (b) XZ plane.
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the maximum activation of 5 mm and the maximum out of plane angulation of 30°. Figure
100a-f) shows the resuhling force· and moment components at the left end of the spring.
For strictly plaaar Kti~tiOM (out-of-plane angle =0), tlte tension, the vertical shear F2

and M) are the OBIy ftOIt4.tro COft1poneRts and ale essentially identical with the results of
Lipsett et al. (1990). Figure 10(a), (b) and (f) shows that the out-of-plane deformations
imposed Oft tM a.ppMnc.do not silflificaotly alreel these values. They do, however, have
a pronouneed effect on !be other oompotlefttB,namely the horizontal shear F) and the
additional moment 'COiIlpOMttta All tltd 1112, These componeRta, which are zero for planar
activations, show a ..1Ied depeOOeMc-OR tbe oak>f..plaae angle in Fig. 100c-e). Results
such uthese oould have· sipificHt iIIlpliea4:iob& fur orthodontic practitioners who are
attemptiRJ to CNateipl'Jlilctb~MlfoNeSyftefl1s. Understanding the effects of
these out-of-plaM;'llef.cJilMationa May allowtbs dCllign of better appliances, resulting in
fewer unwanted effects and shorter treatment periods.

(a)
5.....------------------,

G6&eE) 0 81m activation
IHtee€I 1 81m activation
-- 2 81.. activation
~ 3 81.. activation

4 --- 4 81.. activation
-- 5 m.. activation

3

=

o+.-,...,....,..'M""T'~t::;=;=~;:::;:;:~---.--r-rr_r.".,._.__r1_r_rJ
o 5 10 15 20 25 30 35

Out of plane anile (deg)

(b)
0.02 ...,.------------------,

~ 0 mm activation
~ 1 81m activation
::::::: 2 ..81 activation

3 81m activation
--- 4 81m activation
- 5 81m activation

-0.01 +r-r-r.."..,..,...-,-,--,-,-..-r-,-;-,,.,...,.,...,.-,-"....,,,....,,,....,....,...,....,...,-.--.-1
o 5 10 15 20 25 30 35

Out of plane angle (deg)

Fig. 10. Fon:e and moment components at left endofapp~.(8)Tension; (b) F2; (c) F); (d) M,; (e) M2; (f) M).
(Continued opposite and overleaf)
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(c)
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Fig. 10. (Continued).
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(e)
16 -r-------------------~
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Fig. 10. (Continued).
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5. CONCLUDING REMARKS

In this paper the two-point boundary value rod problem was solved using an initial
value formulation. Converting the original boundary value problem into a sequence of
initial value problems in this fashion has its advantages and drawbacks. The most significant
difficulty is the fact that good initial estimates of the unknowns are required to ensure that
the procedure converges to a solution. This is especially true as the number of unknowns
is increased. There are methods available to help alleviate these problems somewhat [so
called globally convergent root finding techniques (Press et al., 1992) or homotopy con
tinuation methods (Keller, 1%8)], but good initial estimates are still usually required. In
addition, since the equations being considered are hi.gbl·y nonlinear, there is the possibility
that multiple solutions may exist for a given problem. The,shooting procedure is well suited
to finding these solutions, as has been shown previously for.pUmar problems by Faulkner
et al. (1993) and Lipsett et al. (1993).

The solution procedure used also incorporated the division of the rod into segments.
There are several advantages to solving the rod in segments in this fashion. The most
obvious is that many rods of interest, including orthodontic appliances, have complicated
geometries in the undeformed state. Such rods can be thought of as a series of straight,
curved, twisted or possibly helical segments. Segmenting the rod in this. manner allows a
simple, physically intuitive method for modelling such rods. Complex loading conditions
or changing material properties can be handled in this manner as well. A further advantage
of introducing new segments along the rod is the ability to reset all the Euler angles to 0
and avoid the numerical problems caused by the singularity which occurs at 0 = n12.

The procedure as presented is very efficient and is well suited to running on a personal
computer. Since each segment is analysed separately, large computer memory is not required
as with the finite element procedure. Further, the loads and the large deflections are handled
in their entirety in one step, which avoids incremental loading and thus speeds up the
calculations significantly. For example, the solutions for the orthodontic appliance at the
maximum activation considered converged in nine iterations and required approximately
70 s on a 486 personal computer with a DX2 66 MHz processor. It should be noted that
the exact number of iterations required depends on the initial estimates of the unknown
conditions. Each iteration required seven passes of the numerical integrator (one to deter
mine the end values and six to compute the partial derivatives required by the false position
procedure), since this particular problem is one with six unknowns. Problems with fewer
unknowns show better convergence behaviour and require considerably shorter computer
time.

In all cases where previous analytical, numerical or experimental results were available,
the present method showed excellent agreement. A number of checks Oll the accuracy of
the solutions obtained were also similarly satisfied.
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